Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(47): 18825-18833, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37099017

RESUMO

Aliphatic amines are abundant micropollutants in wastewater treatment plant effluents. In order to mitigate such micropollutants, ozonation is one of the most commonly employed advanced treatment processes. Current research regarding ozone efficiency is heavily focusing on reaction mechanisms of different contaminant groups, including structures with amine moieties as reactive sites. This study analyzes pH-dependent reaction kinetics and pathways of gabapentin (GBP), an aliphatic primary amine with an additional carboxylic acid group. The transformation pathway was elucidated applying a novel approach using isotopically labeled ozone (18O) and quantum chemistry calculations. While the direct reaction of GBP with ozone is highly pH-dependent and slow at pH 7 (13.7 M-1 s-1), the rate constant of the deprotonated species (1.76 × 105 M-1 s-1) is comparable to those of other amine compounds. Pathway analysis based on LC-MS/MS measurements revealed that ozonation of GBP leads to the formation of a carboxylic acid group and simultaneous nitrate formation, which was also observed in the case of the aliphatic amino acid glycine. Nitrate was formed with a yield of approximately 100%. Experiments with 18O-labeled ozone demonstrated that the intermediate aldehyde does most likely not include any oxygen originating from ozone. Furthermore, quantum chemistry calculations did not provide an explanation for the C-N scission during GBP ozonation without ozone involvement, although this reaction was slightly more favorable than for respective glycine and ethylamine reactions. Overall, this study contributes to a deeper understanding of reaction mechanisms of aliphatic primary amines during wastewater ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Aminas , Gabapentina , Nitratos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cinética , Glicina , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 450: 131066, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857831

RESUMO

Several oxidative treatment technologies, such as ozonation or Fenton reaction, have been studied and applied to remove monocyclic hydroaromatic carbon from water. Despite decades of application, little seems to be known about formation of transformation products while employing different ozone- or ∙OH-based treatment methods and their fate in biodegradation. In this study, we demonstrate that O3/H2O2 treatment of benzene, toluene, ethylbenzene (BTE), and benzoic acid (BA) leads to less hydroxylated aromatic transformation products compared to UV/H2O2 as reference system - this at a similar ∙OH exposure and parent compound removal efficiency. Aerobic biodegradation tests after oxidation of 0.15 mM BA (12.6 mg C L-1 theoretical DOC) revealed that a less biodegradable DOC fraction > 4 mg C L-1 was formed in both oxidative treatments compared to the BA control. No advantage of ozonation over UV/H2O2 treatment was observed in terms of mineralization capabilities, however, we detected less transformation products after oxidation and biodegradation using high-resolution mass spectrometry. Biodegradation of BA that was not oxidized was more complete with minimal organic residual. Overall, the study provides new insights into the oxidation of monocyclic aromatics and raises questions regarding the biodegradability of oxidation products, which is relevant for several treatment applications.


Assuntos
Hidrocarbonetos Aromáticos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Oxirredução , Hidrocarbonetos Aromáticos/análise , Ozônio/química , Purificação da Água/métodos
3.
Water Res ; 233: 119740, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822109

RESUMO

As ozonation becomes a widespread treatment for removal of chemicals of emerging concern from wastewater treatment plant effluents, there are increasing concerns regarding the formation of ozonation products (OPs), and their possible impacts on the aquatic environment and eventually human health. In this study, a novel method was developed that utilizes heavy oxygen (18O2) for the production of heavy ozone ([18O1]O2, [18O2]O1, [18O3]) to actively label OPs from oxygen transfer reactions. To establish and validate this new approach, venlafaxine with a well-described oxygen transfer reaction (tertiary amine -> N-oxide) was chosen as a model compound. Observed 18O/16O ratios in the major OP venlafaxine N-oxide (NOV) correlated with expected 18O purities based on tracer experiments. These results confirmed the successful labeling with heavy oxygen and furthermore demonstrate the potential to monitor NOV as an indicator of 18O/16O ratios during ozonation. As a next step, 18O/16O ratios were used to elucidate the formation mechanism of previously described OPs from sulfamethoxazole (SMX). Seven OPs were detected including the frequently described nitro-SMX, which was formed with a maximum yield of 3.2% (of initial SMX). With the successful labeling of six of the seven OPs from sulfamethoxazole, it was possible to confirm their previously proposed formation pathways, and to distinguish oxygen transfer from electron transfer reactions. 18O/16O ratios in OPs indicate that hydroxylation of the aromatic ring and formation of nitro-groups mostly follows oxygen transfer reactions, while electron transfer reactions initiate the formation of hydroxylamine and the abstraction of NH2 leading to catechol.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Ozônio/química , Cloridrato de Venlafaxina , Oxigênio , Óxidos , Sulfametoxazol/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
4.
Water Res ; 182: 116039, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622133

RESUMO

By applying favorable oxic and oligotrophic conditions through subsequent aeration and an additional infiltration step, the sequential managed aquifer recharge technology (SMART) was proven to better remove trace organic chemicals (TOrCs) than conventional MAR systems. To minimize the physical footprint, pumping costs and hydraulic retention times, as well as to overcome limitations of site-specific heterogeneities of such systems, the SMART concept was further upgraded by two main engineered technologies. This SMARTplus bioreactor is comprised of an infiltration trench and highly homogenous porous media to provide high infiltration rates and plug-flow conditions. Additionally, an in-situ oxygen delivery device, in particular a self-designed PDMS gas-liquid membrane contactor, was designed to establish favorable subsurface oxic conditions. This novel SMARTplus technology was investigated at pilot scale and is designed for advanced water treatment either in the context of water reuse or treatment of impaired surface water. To determine the design specifications and to construct a pilot-scale membrane contactor, the mass transfer coefficients of the PDMS membrane were investigated at lab-scale for varying Reynold numbers (0.2-2). With the help of the customized membrane contactor, homogenous, bubble-free and passive oxygen delivery could be successfully demonstrated at pilot-scale under laminar flow conditions and short contact times. Oxygen concentrations downstream of the membrane contactors met the design specifications (>1 mg/L) as long as the required feed water quality was provided. However, high NH4+ concentrations in the secondary effluent resulted in higher and unsteady oxygen demand than the target oxygen transfer rates could meet and suboxic conditions prevailed. Although a 20-50% enhancement in the removal of certain compounds (4-FAA, antipyrine, sulfamethoxazole, and citalopram) was achieved, demonstration of the full potential of enhanced TOrC removal by SMARTplus was hindered due to unsteady feed water quality.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Purificação da Água , Oxirredução , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...